Copied to
clipboard

G = C62.254C23order 288 = 25·32

99th non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.254C23, (C6×D4).17S3, (C3×C12).100D4, (C2×C12).153D6, (C22×C6).95D6, C625C417C2, C12.59(C3⋊D4), C4.7(C327D4), C34(C23.12D6), (C6×C12).144C22, C3216(C4.4D4), (C2×C62).72C22, C6.106(D42S3), C2.16(C12.D6), (D4×C3×C6).10C2, (C4×C3⋊Dic3)⋊9C2, (C2×D4).6(C3⋊S3), (C3×C6).282(C2×D4), C6.123(C2×C3⋊D4), C23.13(C2×C3⋊S3), (C2×C324Q8)⋊16C2, C2.12(C2×C327D4), (C3×C6).152(C4○D4), (C2×C6).271(C22×S3), C22.58(C22×C3⋊S3), (C2×C3⋊Dic3).166C22, (C2×C4).49(C2×C3⋊S3), SmallGroup(288,793)

Series: Derived Chief Lower central Upper central

C1C62 — C62.254C23
C1C3C32C3×C6C62C2×C3⋊Dic3C4×C3⋊Dic3 — C62.254C23
C32C62 — C62.254C23
C1C22C2×D4

Generators and relations for C62.254C23
 G = < a,b,c,d,e | a6=b6=e2=1, c2=b3, d2=a3, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=a3b3c, ede=a3d >

Subgroups: 716 in 228 conjugacy classes, 77 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C3×C6, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C3×D4, C22×C6, C4.4D4, C3⋊Dic3, C3×C12, C62, C62, C4×Dic3, C6.D4, C2×Dic6, C6×D4, C324Q8, C2×C3⋊Dic3, C6×C12, D4×C32, C2×C62, C23.12D6, C4×C3⋊Dic3, C625C4, C2×C324Q8, D4×C3×C6, C62.254C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, C3⋊D4, C22×S3, C4.4D4, C2×C3⋊S3, D42S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, C23.12D6, C12.D6, C2×C327D4, C62.254C23

Smallest permutation representation of C62.254C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 31 38 57 16 52)(2 32 39 58 17 53)(3 33 40 59 18 54)(4 34 41 60 13 49)(5 35 42 55 14 50)(6 36 37 56 15 51)(7 142 27 22 123 137)(8 143 28 23 124 138)(9 144 29 24 125 133)(10 139 30 19 126 134)(11 140 25 20 121 135)(12 141 26 21 122 136)(43 93 73 63 83 71)(44 94 74 64 84 72)(45 95 75 65 79 67)(46 96 76 66 80 68)(47 91 77 61 81 69)(48 92 78 62 82 70)(85 99 112 104 132 118)(86 100 113 105 127 119)(87 101 114 106 128 120)(88 102 109 107 129 115)(89 97 110 108 130 116)(90 98 111 103 131 117)
(1 100 57 127)(2 99 58 132)(3 98 59 131)(4 97 60 130)(5 102 55 129)(6 101 56 128)(7 94 22 84)(8 93 23 83)(9 92 24 82)(10 91 19 81)(11 96 20 80)(12 95 21 79)(13 108 34 89)(14 107 35 88)(15 106 36 87)(16 105 31 86)(17 104 32 85)(18 103 33 90)(25 68 135 76)(26 67 136 75)(27 72 137 74)(28 71 138 73)(29 70 133 78)(30 69 134 77)(37 120 51 114)(38 119 52 113)(39 118 53 112)(40 117 54 111)(41 116 49 110)(42 115 50 109)(43 124 63 143)(44 123 64 142)(45 122 65 141)(46 121 66 140)(47 126 61 139)(48 125 62 144)
(1 67 4 70)(2 68 5 71)(3 69 6 72)(7 111 10 114)(8 112 11 109)(9 113 12 110)(13 62 16 65)(14 63 17 66)(15 64 18 61)(19 120 22 117)(20 115 23 118)(21 116 24 119)(25 129 28 132)(26 130 29 127)(27 131 30 128)(31 45 34 48)(32 46 35 43)(33 47 36 44)(37 94 40 91)(38 95 41 92)(39 96 42 93)(49 82 52 79)(50 83 53 80)(51 84 54 81)(55 73 58 76)(56 74 59 77)(57 75 60 78)(85 121 88 124)(86 122 89 125)(87 123 90 126)(97 133 100 136)(98 134 101 137)(99 135 102 138)(103 139 106 142)(104 140 107 143)(105 141 108 144)
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 117)(8 118)(9 119)(10 120)(11 115)(12 116)(13 62)(14 63)(15 64)(16 65)(17 66)(18 61)(19 114)(20 109)(21 110)(22 111)(23 112)(24 113)(25 102)(26 97)(27 98)(28 99)(29 100)(30 101)(31 45)(32 46)(33 47)(34 48)(35 43)(36 44)(37 94)(38 95)(39 96)(40 91)(41 92)(42 93)(49 82)(50 83)(51 84)(52 79)(53 80)(54 81)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(85 143)(86 144)(87 139)(88 140)(89 141)(90 142)(103 123)(104 124)(105 125)(106 126)(107 121)(108 122)(127 133)(128 134)(129 135)(130 136)(131 137)(132 138)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,31,38,57,16,52)(2,32,39,58,17,53)(3,33,40,59,18,54)(4,34,41,60,13,49)(5,35,42,55,14,50)(6,36,37,56,15,51)(7,142,27,22,123,137)(8,143,28,23,124,138)(9,144,29,24,125,133)(10,139,30,19,126,134)(11,140,25,20,121,135)(12,141,26,21,122,136)(43,93,73,63,83,71)(44,94,74,64,84,72)(45,95,75,65,79,67)(46,96,76,66,80,68)(47,91,77,61,81,69)(48,92,78,62,82,70)(85,99,112,104,132,118)(86,100,113,105,127,119)(87,101,114,106,128,120)(88,102,109,107,129,115)(89,97,110,108,130,116)(90,98,111,103,131,117), (1,100,57,127)(2,99,58,132)(3,98,59,131)(4,97,60,130)(5,102,55,129)(6,101,56,128)(7,94,22,84)(8,93,23,83)(9,92,24,82)(10,91,19,81)(11,96,20,80)(12,95,21,79)(13,108,34,89)(14,107,35,88)(15,106,36,87)(16,105,31,86)(17,104,32,85)(18,103,33,90)(25,68,135,76)(26,67,136,75)(27,72,137,74)(28,71,138,73)(29,70,133,78)(30,69,134,77)(37,120,51,114)(38,119,52,113)(39,118,53,112)(40,117,54,111)(41,116,49,110)(42,115,50,109)(43,124,63,143)(44,123,64,142)(45,122,65,141)(46,121,66,140)(47,126,61,139)(48,125,62,144), (1,67,4,70)(2,68,5,71)(3,69,6,72)(7,111,10,114)(8,112,11,109)(9,113,12,110)(13,62,16,65)(14,63,17,66)(15,64,18,61)(19,120,22,117)(20,115,23,118)(21,116,24,119)(25,129,28,132)(26,130,29,127)(27,131,30,128)(31,45,34,48)(32,46,35,43)(33,47,36,44)(37,94,40,91)(38,95,41,92)(39,96,42,93)(49,82,52,79)(50,83,53,80)(51,84,54,81)(55,73,58,76)(56,74,59,77)(57,75,60,78)(85,121,88,124)(86,122,89,125)(87,123,90,126)(97,133,100,136)(98,134,101,137)(99,135,102,138)(103,139,106,142)(104,140,107,143)(105,141,108,144), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,117)(8,118)(9,119)(10,120)(11,115)(12,116)(13,62)(14,63)(15,64)(16,65)(17,66)(18,61)(19,114)(20,109)(21,110)(22,111)(23,112)(24,113)(25,102)(26,97)(27,98)(28,99)(29,100)(30,101)(31,45)(32,46)(33,47)(34,48)(35,43)(36,44)(37,94)(38,95)(39,96)(40,91)(41,92)(42,93)(49,82)(50,83)(51,84)(52,79)(53,80)(54,81)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(85,143)(86,144)(87,139)(88,140)(89,141)(90,142)(103,123)(104,124)(105,125)(106,126)(107,121)(108,122)(127,133)(128,134)(129,135)(130,136)(131,137)(132,138)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,31,38,57,16,52)(2,32,39,58,17,53)(3,33,40,59,18,54)(4,34,41,60,13,49)(5,35,42,55,14,50)(6,36,37,56,15,51)(7,142,27,22,123,137)(8,143,28,23,124,138)(9,144,29,24,125,133)(10,139,30,19,126,134)(11,140,25,20,121,135)(12,141,26,21,122,136)(43,93,73,63,83,71)(44,94,74,64,84,72)(45,95,75,65,79,67)(46,96,76,66,80,68)(47,91,77,61,81,69)(48,92,78,62,82,70)(85,99,112,104,132,118)(86,100,113,105,127,119)(87,101,114,106,128,120)(88,102,109,107,129,115)(89,97,110,108,130,116)(90,98,111,103,131,117), (1,100,57,127)(2,99,58,132)(3,98,59,131)(4,97,60,130)(5,102,55,129)(6,101,56,128)(7,94,22,84)(8,93,23,83)(9,92,24,82)(10,91,19,81)(11,96,20,80)(12,95,21,79)(13,108,34,89)(14,107,35,88)(15,106,36,87)(16,105,31,86)(17,104,32,85)(18,103,33,90)(25,68,135,76)(26,67,136,75)(27,72,137,74)(28,71,138,73)(29,70,133,78)(30,69,134,77)(37,120,51,114)(38,119,52,113)(39,118,53,112)(40,117,54,111)(41,116,49,110)(42,115,50,109)(43,124,63,143)(44,123,64,142)(45,122,65,141)(46,121,66,140)(47,126,61,139)(48,125,62,144), (1,67,4,70)(2,68,5,71)(3,69,6,72)(7,111,10,114)(8,112,11,109)(9,113,12,110)(13,62,16,65)(14,63,17,66)(15,64,18,61)(19,120,22,117)(20,115,23,118)(21,116,24,119)(25,129,28,132)(26,130,29,127)(27,131,30,128)(31,45,34,48)(32,46,35,43)(33,47,36,44)(37,94,40,91)(38,95,41,92)(39,96,42,93)(49,82,52,79)(50,83,53,80)(51,84,54,81)(55,73,58,76)(56,74,59,77)(57,75,60,78)(85,121,88,124)(86,122,89,125)(87,123,90,126)(97,133,100,136)(98,134,101,137)(99,135,102,138)(103,139,106,142)(104,140,107,143)(105,141,108,144), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,117)(8,118)(9,119)(10,120)(11,115)(12,116)(13,62)(14,63)(15,64)(16,65)(17,66)(18,61)(19,114)(20,109)(21,110)(22,111)(23,112)(24,113)(25,102)(26,97)(27,98)(28,99)(29,100)(30,101)(31,45)(32,46)(33,47)(34,48)(35,43)(36,44)(37,94)(38,95)(39,96)(40,91)(41,92)(42,93)(49,82)(50,83)(51,84)(52,79)(53,80)(54,81)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(85,143)(86,144)(87,139)(88,140)(89,141)(90,142)(103,123)(104,124)(105,125)(106,126)(107,121)(108,122)(127,133)(128,134)(129,135)(130,136)(131,137)(132,138) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,31,38,57,16,52),(2,32,39,58,17,53),(3,33,40,59,18,54),(4,34,41,60,13,49),(5,35,42,55,14,50),(6,36,37,56,15,51),(7,142,27,22,123,137),(8,143,28,23,124,138),(9,144,29,24,125,133),(10,139,30,19,126,134),(11,140,25,20,121,135),(12,141,26,21,122,136),(43,93,73,63,83,71),(44,94,74,64,84,72),(45,95,75,65,79,67),(46,96,76,66,80,68),(47,91,77,61,81,69),(48,92,78,62,82,70),(85,99,112,104,132,118),(86,100,113,105,127,119),(87,101,114,106,128,120),(88,102,109,107,129,115),(89,97,110,108,130,116),(90,98,111,103,131,117)], [(1,100,57,127),(2,99,58,132),(3,98,59,131),(4,97,60,130),(5,102,55,129),(6,101,56,128),(7,94,22,84),(8,93,23,83),(9,92,24,82),(10,91,19,81),(11,96,20,80),(12,95,21,79),(13,108,34,89),(14,107,35,88),(15,106,36,87),(16,105,31,86),(17,104,32,85),(18,103,33,90),(25,68,135,76),(26,67,136,75),(27,72,137,74),(28,71,138,73),(29,70,133,78),(30,69,134,77),(37,120,51,114),(38,119,52,113),(39,118,53,112),(40,117,54,111),(41,116,49,110),(42,115,50,109),(43,124,63,143),(44,123,64,142),(45,122,65,141),(46,121,66,140),(47,126,61,139),(48,125,62,144)], [(1,67,4,70),(2,68,5,71),(3,69,6,72),(7,111,10,114),(8,112,11,109),(9,113,12,110),(13,62,16,65),(14,63,17,66),(15,64,18,61),(19,120,22,117),(20,115,23,118),(21,116,24,119),(25,129,28,132),(26,130,29,127),(27,131,30,128),(31,45,34,48),(32,46,35,43),(33,47,36,44),(37,94,40,91),(38,95,41,92),(39,96,42,93),(49,82,52,79),(50,83,53,80),(51,84,54,81),(55,73,58,76),(56,74,59,77),(57,75,60,78),(85,121,88,124),(86,122,89,125),(87,123,90,126),(97,133,100,136),(98,134,101,137),(99,135,102,138),(103,139,106,142),(104,140,107,143),(105,141,108,144)], [(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,117),(8,118),(9,119),(10,120),(11,115),(12,116),(13,62),(14,63),(15,64),(16,65),(17,66),(18,61),(19,114),(20,109),(21,110),(22,111),(23,112),(24,113),(25,102),(26,97),(27,98),(28,99),(29,100),(30,101),(31,45),(32,46),(33,47),(34,48),(35,43),(36,44),(37,94),(38,95),(39,96),(40,91),(41,92),(42,93),(49,82),(50,83),(51,84),(52,79),(53,80),(54,81),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(85,143),(86,144),(87,139),(88,140),(89,141),(90,142),(103,123),(104,124),(105,125),(106,126),(107,121),(108,122),(127,133),(128,134),(129,135),(130,136),(131,137),(132,138)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F4G4H6A···6L6M···6AB12A···12H
order1222223333444444446···66···612···12
size1111442222221818181836362···24···44···4

54 irreducible representations

dim111112222224
type+++++++++-
imageC1C2C2C2C2S3D4D6D6C4○D4C3⋊D4D42S3
kernelC62.254C23C4×C3⋊Dic3C625C4C2×C324Q8D4×C3×C6C6×D4C3×C12C2×C12C22×C6C3×C6C12C6
# reps1141142484168

Matrix representation of C62.254C23 in GL6(𝔽13)

900000
930000
001000
000100
0000120
0000012
,
1200000
0120000
00121200
001000
000010
000001
,
1250000
1010000
0031000
0071000
0000810
000085
,
100000
010000
001000
000100
0000122
0000121
,
100000
3120000
001000
000100
0000111
0000012

G:=sub<GL(6,GF(13))| [9,9,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,10,0,0,0,0,5,1,0,0,0,0,0,0,3,7,0,0,0,0,10,10,0,0,0,0,0,0,8,8,0,0,0,0,10,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,2,1],[1,3,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,11,12] >;

C62.254C23 in GAP, Magma, Sage, TeX

C_6^2._{254}C_2^3
% in TeX

G:=Group("C6^2.254C2^3");
// GroupNames label

G:=SmallGroup(288,793);
// by ID

G=gap.SmallGroup(288,793);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,590,135,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=e^2=1,c^2=b^3,d^2=a^3,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*b^3*c,e*d*e=a^3*d>;
// generators/relations

׿
×
𝔽